3.7.88 \(\int \frac {\sqrt {a d e+(c d^2+a e^2) x+c d e x^2}}{\sqrt {d+e x} (f+g x)^5} \, dx\) [688]

3.7.88.1 Optimal result
3.7.88.2 Mathematica [A] (verified)
3.7.88.3 Rubi [A] (verified)
3.7.88.4 Maple [B] (verified)
3.7.88.5 Fricas [B] (verification not implemented)
3.7.88.6 Sympy [F(-1)]
3.7.88.7 Maxima [F]
3.7.88.8 Giac [B] (verification not implemented)
3.7.88.9 Mupad [F(-1)]

3.7.88.1 Optimal result

Integrand size = 46, antiderivative size = 347 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x} (f+g x)^5} \, dx=-\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 g \sqrt {d+e x} (f+g x)^4}+\frac {c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{24 g (c d f-a e g) \sqrt {d+e x} (f+g x)^3}+\frac {5 c^2 d^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{96 g (c d f-a e g)^2 \sqrt {d+e x} (f+g x)^2}+\frac {5 c^3 d^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{64 g (c d f-a e g)^3 \sqrt {d+e x} (f+g x)}+\frac {5 c^4 d^4 \arctan \left (\frac {\sqrt {g} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d f-a e g} \sqrt {d+e x}}\right )}{64 g^{3/2} (c d f-a e g)^{7/2}} \]

output
5/64*c^4*d^4*arctan(g^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(-a*e* 
g+c*d*f)^(1/2)/(e*x+d)^(1/2))/g^(3/2)/(-a*e*g+c*d*f)^(7/2)-1/4*(a*d*e+(a*e 
^2+c*d^2)*x+c*d*e*x^2)^(1/2)/g/(g*x+f)^4/(e*x+d)^(1/2)+1/24*c*d*(a*d*e+(a* 
e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/g/(-a*e*g+c*d*f)/(g*x+f)^3/(e*x+d)^(1/2)+5/9 
6*c^2*d^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/g/(-a*e*g+c*d*f)^2/(g*x+ 
f)^2/(e*x+d)^(1/2)+5/64*c^3*d^3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/g/ 
(-a*e*g+c*d*f)^3/(g*x+f)/(e*x+d)^(1/2)
 
3.7.88.2 Mathematica [A] (verified)

Time = 1.06 (sec) , antiderivative size = 234, normalized size of antiderivative = 0.67 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x} (f+g x)^5} \, dx=\frac {c^4 d^4 \sqrt {(a e+c d x) (d+e x)} \left (\frac {\sqrt {g} \left (48 a^3 e^3 g^3+8 a^2 c d e^2 g^2 (-17 f+g x)-2 a c^2 d^2 e g \left (-59 f^2+18 f g x+5 g^2 x^2\right )+c^3 d^3 \left (-15 f^3+73 f^2 g x+55 f g^2 x^2+15 g^3 x^3\right )\right )}{c^4 d^4 (c d f-a e g)^3 (f+g x)^4}+\frac {15 \arctan \left (\frac {\sqrt {g} \sqrt {a e+c d x}}{\sqrt {c d f-a e g}}\right )}{(c d f-a e g)^{7/2} \sqrt {a e+c d x}}\right )}{192 g^{3/2} \sqrt {d+e x}} \]

input
Integrate[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(Sqrt[d + e*x]*(f + 
g*x)^5),x]
 
output
(c^4*d^4*Sqrt[(a*e + c*d*x)*(d + e*x)]*((Sqrt[g]*(48*a^3*e^3*g^3 + 8*a^2*c 
*d*e^2*g^2*(-17*f + g*x) - 2*a*c^2*d^2*e*g*(-59*f^2 + 18*f*g*x + 5*g^2*x^2 
) + c^3*d^3*(-15*f^3 + 73*f^2*g*x + 55*f*g^2*x^2 + 15*g^3*x^3)))/(c^4*d^4* 
(c*d*f - a*e*g)^3*(f + g*x)^4) + (15*ArcTan[(Sqrt[g]*Sqrt[a*e + c*d*x])/Sq 
rt[c*d*f - a*e*g]])/((c*d*f - a*e*g)^(7/2)*Sqrt[a*e + c*d*x])))/(192*g^(3/ 
2)*Sqrt[d + e*x])
 
3.7.88.3 Rubi [A] (verified)

Time = 0.73 (sec) , antiderivative size = 362, normalized size of antiderivative = 1.04, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {1249, 1254, 1254, 1254, 1255, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} (f+g x)^5} \, dx\)

\(\Big \downarrow \) 1249

\(\displaystyle \frac {c d \int \frac {\sqrt {d+e x}}{(f+g x)^4 \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{8 g}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 g \sqrt {d+e x} (f+g x)^4}\)

\(\Big \downarrow \) 1254

\(\displaystyle \frac {c d \left (\frac {5 c d \int \frac {\sqrt {d+e x}}{(f+g x)^3 \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{6 (c d f-a e g)}+\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 \sqrt {d+e x} (f+g x)^3 (c d f-a e g)}\right )}{8 g}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 g \sqrt {d+e x} (f+g x)^4}\)

\(\Big \downarrow \) 1254

\(\displaystyle \frac {c d \left (\frac {5 c d \left (\frac {3 c d \int \frac {\sqrt {d+e x}}{(f+g x)^2 \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{4 (c d f-a e g)}+\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 \sqrt {d+e x} (f+g x)^2 (c d f-a e g)}\right )}{6 (c d f-a e g)}+\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 \sqrt {d+e x} (f+g x)^3 (c d f-a e g)}\right )}{8 g}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 g \sqrt {d+e x} (f+g x)^4}\)

\(\Big \downarrow \) 1254

\(\displaystyle \frac {c d \left (\frac {5 c d \left (\frac {3 c d \left (\frac {c d \int \frac {\sqrt {d+e x}}{(f+g x) \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{2 (c d f-a e g)}+\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} (f+g x) (c d f-a e g)}\right )}{4 (c d f-a e g)}+\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 \sqrt {d+e x} (f+g x)^2 (c d f-a e g)}\right )}{6 (c d f-a e g)}+\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 \sqrt {d+e x} (f+g x)^3 (c d f-a e g)}\right )}{8 g}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 g \sqrt {d+e x} (f+g x)^4}\)

\(\Big \downarrow \) 1255

\(\displaystyle \frac {c d \left (\frac {5 c d \left (\frac {3 c d \left (\frac {c d e^2 \int \frac {1}{(c d f-a e g) e^2+\frac {g \left (c d e x^2+\left (c d^2+a e^2\right ) x+a d e\right ) e^2}{d+e x}}d\frac {\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}{\sqrt {d+e x}}}{c d f-a e g}+\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} (f+g x) (c d f-a e g)}\right )}{4 (c d f-a e g)}+\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 \sqrt {d+e x} (f+g x)^2 (c d f-a e g)}\right )}{6 (c d f-a e g)}+\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 \sqrt {d+e x} (f+g x)^3 (c d f-a e g)}\right )}{8 g}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 g \sqrt {d+e x} (f+g x)^4}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {c d \left (\frac {5 c d \left (\frac {3 c d \left (\frac {c d \arctan \left (\frac {\sqrt {g} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {c d f-a e g}}\right )}{\sqrt {g} (c d f-a e g)^{3/2}}+\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} (f+g x) (c d f-a e g)}\right )}{4 (c d f-a e g)}+\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 \sqrt {d+e x} (f+g x)^2 (c d f-a e g)}\right )}{6 (c d f-a e g)}+\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 \sqrt {d+e x} (f+g x)^3 (c d f-a e g)}\right )}{8 g}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 g \sqrt {d+e x} (f+g x)^4}\)

input
Int[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(Sqrt[d + e*x]*(f + g*x)^5 
),x]
 
output
-1/4*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(g*Sqrt[d + e*x]*(f + g*x 
)^4) + (c*d*(Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(3*(c*d*f - a*e*g 
)*Sqrt[d + e*x]*(f + g*x)^3) + (5*c*d*(Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c* 
d*e*x^2]/(2*(c*d*f - a*e*g)*Sqrt[d + e*x]*(f + g*x)^2) + (3*c*d*(Sqrt[a*d* 
e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/((c*d*f - a*e*g)*Sqrt[d + e*x]*(f + g*x 
)) + (c*d*ArcTan[(Sqrt[g]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(Sq 
rt[c*d*f - a*e*g]*Sqrt[d + e*x])])/(Sqrt[g]*(c*d*f - a*e*g)^(3/2))))/(4*(c 
*d*f - a*e*g))))/(6*(c*d*f - a*e*g))))/(8*g)
 

3.7.88.3.1 Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 1249
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) 
+ (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^m*(f + g*x)^(n + 1)*((a + 
 b*x + c*x^2)^p/(g*(n + 1))), x] + Simp[c*(m/(e*g*(n + 1)))   Int[(d + e*x) 
^(m + 1)*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b 
, c, d, e, f, g}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[m + p, 0] && G 
tQ[p, 0] && LtQ[n, -1] &&  !(IntegerQ[n + p] && LeQ[n + p + 2, 0])
 

rule 1254
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) 
+ (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-e^2)*(d + e*x)^(m - 1)*(f + g*x)^ 
(n + 1)*((a + b*x + c*x^2)^(p + 1)/((n + 1)*(c*e*f + c*d*g - b*e*g))), x] - 
 Simp[c*e*((m - n - 2)/((n + 1)*(c*e*f + c*d*g - b*e*g)))   Int[(d + e*x)^m 
*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, 
g, m, p}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[m + p, 0] && LtQ[n, -1 
] && IntegerQ[2*p]
 

rule 1255
Int[Sqrt[(d_) + (e_.)*(x_)]/(((f_.) + (g_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + 
 (c_.)*(x_)^2]), x_Symbol] :> Simp[2*e^2   Subst[Int[1/(c*(e*f + d*g) - b*e 
*g + e^2*g*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; FreeQ[{ 
a, b, c, d, e, f, g}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0]
 
3.7.88.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(685\) vs. \(2(309)=618\).

Time = 0.54 (sec) , antiderivative size = 686, normalized size of antiderivative = 1.98

method result size
default \(\frac {\sqrt {\left (c d x +a e \right ) \left (e x +d \right )}\, \left (15 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) c^{4} d^{4} g^{4} x^{4}+60 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) c^{4} d^{4} f \,g^{3} x^{3}+90 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) c^{4} d^{4} f^{2} g^{2} x^{2}+60 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) c^{4} d^{4} f^{3} g x -15 c^{3} d^{3} g^{3} x^{3} \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}+15 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) c^{4} d^{4} f^{4}+10 a \,c^{2} d^{2} e \,g^{3} x^{2} \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}-55 c^{3} d^{3} f \,g^{2} x^{2} \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}-8 a^{2} c d \,e^{2} g^{3} x \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}+36 a \,c^{2} d^{2} e f \,g^{2} x \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}-73 c^{3} d^{3} f^{2} g x \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}-48 \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}\, a^{3} e^{3} g^{3}+136 \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}\, a^{2} c d \,e^{2} f \,g^{2}-118 \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}\, a \,c^{2} d^{2} e \,f^{2} g +15 \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}\, c^{3} d^{3} f^{3}\right )}{192 \sqrt {e x +d}\, \sqrt {\left (a e g -c d f \right ) g}\, \left (g x +f \right )^{4} g \left (a e g -c d f \right ) \left (a^{2} e^{2} g^{2}-2 a c d e f g +c^{2} d^{2} f^{2}\right ) \sqrt {c d x +a e}}\) \(686\)

input
int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(g*x+f)^5/(e*x+d)^(1/2),x,meth 
od=_RETURNVERBOSE)
 
output
1/192*((c*d*x+a*e)*(e*x+d))^(1/2)*(15*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g- 
c*d*f)*g)^(1/2))*c^4*d^4*g^4*x^4+60*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c* 
d*f)*g)^(1/2))*c^4*d^4*f*g^3*x^3+90*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c* 
d*f)*g)^(1/2))*c^4*d^4*f^2*g^2*x^2+60*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g- 
c*d*f)*g)^(1/2))*c^4*d^4*f^3*g*x-15*c^3*d^3*g^3*x^3*(c*d*x+a*e)^(1/2)*((a* 
e*g-c*d*f)*g)^(1/2)+15*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2) 
)*c^4*d^4*f^4+10*a*c^2*d^2*e*g^3*x^2*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^( 
1/2)-55*c^3*d^3*f*g^2*x^2*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)-8*a^2* 
c*d*e^2*g^3*x*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)+36*a*c^2*d^2*e*f*g 
^2*x*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)-73*c^3*d^3*f^2*g*x*(c*d*x+a 
*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)-48*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^( 
1/2)*a^3*e^3*g^3+136*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)*a^2*c*d*e^2 
*f*g^2-118*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)*a*c^2*d^2*e*f^2*g+15* 
(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)*c^3*d^3*f^3)/(e*x+d)^(1/2)/((a*e 
*g-c*d*f)*g)^(1/2)/(g*x+f)^4/g/(a*e*g-c*d*f)/(a^2*e^2*g^2-2*a*c*d*e*f*g+c^ 
2*d^2*f^2)/(c*d*x+a*e)^(1/2)
 
3.7.88.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1284 vs. \(2 (309) = 618\).

Time = 1.35 (sec) , antiderivative size = 2610, normalized size of antiderivative = 7.52 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x} (f+g x)^5} \, dx=\text {Too large to display} \]

input
integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(g*x+f)^5/(e*x+d)^(1/2), 
x, algorithm="fricas")
 
output
[1/384*(15*(c^4*d^4*e*g^4*x^5 + c^4*d^5*f^4 + (4*c^4*d^4*e*f*g^3 + c^4*d^5 
*g^4)*x^4 + 2*(3*c^4*d^4*e*f^2*g^2 + 2*c^4*d^5*f*g^3)*x^3 + 2*(2*c^4*d^4*e 
*f^3*g + 3*c^4*d^5*f^2*g^2)*x^2 + (c^4*d^4*e*f^4 + 4*c^4*d^5*f^3*g)*x)*sqr 
t(-c*d*f*g + a*e*g^2)*log(-(c*d*e*g*x^2 - c*d^2*f + 2*a*d*e*g - (c*d*e*f - 
 (c*d^2 + 2*a*e^2)*g)*x + 2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sq 
rt(-c*d*f*g + a*e*g^2)*sqrt(e*x + d))/(e*g*x^2 + d*f + (e*f + d*g)*x)) - 2 
*(15*c^4*d^4*f^4*g - 133*a*c^3*d^3*e*f^3*g^2 + 254*a^2*c^2*d^2*e^2*f^2*g^3 
 - 184*a^3*c*d*e^3*f*g^4 + 48*a^4*e^4*g^5 - 15*(c^4*d^4*f*g^4 - a*c^3*d^3* 
e*g^5)*x^3 - 5*(11*c^4*d^4*f^2*g^3 - 13*a*c^3*d^3*e*f*g^4 + 2*a^2*c^2*d^2* 
e^2*g^5)*x^2 - (73*c^4*d^4*f^3*g^2 - 109*a*c^3*d^3*e*f^2*g^3 + 44*a^2*c^2* 
d^2*e^2*f*g^4 - 8*a^3*c*d*e^3*g^5)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a* 
e^2)*x)*sqrt(e*x + d))/(c^4*d^5*f^8*g^2 - 4*a*c^3*d^4*e*f^7*g^3 + 6*a^2*c^ 
2*d^3*e^2*f^6*g^4 - 4*a^3*c*d^2*e^3*f^5*g^5 + a^4*d*e^4*f^4*g^6 + (c^4*d^4 
*e*f^4*g^6 - 4*a*c^3*d^3*e^2*f^3*g^7 + 6*a^2*c^2*d^2*e^3*f^2*g^8 - 4*a^3*c 
*d*e^4*f*g^9 + a^4*e^5*g^10)*x^5 + (4*c^4*d^4*e*f^5*g^5 + a^4*d*e^4*g^10 + 
 (c^4*d^5 - 16*a*c^3*d^3*e^2)*f^4*g^6 - 4*(a*c^3*d^4*e - 6*a^2*c^2*d^2*e^3 
)*f^3*g^7 + 2*(3*a^2*c^2*d^3*e^2 - 8*a^3*c*d*e^4)*f^2*g^8 - 4*(a^3*c*d^2*e 
^3 - a^4*e^5)*f*g^9)*x^4 + 2*(3*c^4*d^4*e*f^6*g^4 + 2*a^4*d*e^4*f*g^9 + 2* 
(c^4*d^5 - 6*a*c^3*d^3*e^2)*f^5*g^5 - 2*(4*a*c^3*d^4*e - 9*a^2*c^2*d^2*e^3 
)*f^4*g^6 + 12*(a^2*c^2*d^3*e^2 - a^3*c*d*e^4)*f^3*g^7 - (8*a^3*c*d^2*e...
 
3.7.88.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x} (f+g x)^5} \, dx=\text {Timed out} \]

input
integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2)/(g*x+f)**5/(e*x+d)** 
(1/2),x)
 
output
Timed out
 
3.7.88.7 Maxima [F]

\[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x} (f+g x)^5} \, dx=\int { \frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{\sqrt {e x + d} {\left (g x + f\right )}^{5}} \,d x } \]

input
integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(g*x+f)^5/(e*x+d)^(1/2), 
x, algorithm="maxima")
 
output
integrate(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)/(sqrt(e*x + d)*(g*x 
+ f)^5), x)
 
3.7.88.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1955 vs. \(2 (309) = 618\).

Time = 1.73 (sec) , antiderivative size = 1955, normalized size of antiderivative = 5.63 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x} (f+g x)^5} \, dx=\text {Too large to display} \]

input
integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(g*x+f)^5/(e*x+d)^(1/2), 
x, algorithm="giac")
 
output
1/192*(15*c^4*d^4*e*arctan(sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)*g/(sqrt 
(c*d*f*g - a*e*g^2)*e))/((c^3*d^3*f^3*g - 3*a*c^2*d^2*e*f^2*g^2 + 3*a^2*c* 
d*e^2*f*g^3 - a^3*e^3*g^4)*sqrt(c*d*f*g - a*e*g^2)) - (15*c^4*d^4*e^5*f^4* 
arctan(sqrt(-c*d^2*e + a*e^3)*g/(sqrt(c*d*f*g - a*e*g^2)*e)) - 60*c^4*d^5* 
e^4*f^3*g*arctan(sqrt(-c*d^2*e + a*e^3)*g/(sqrt(c*d*f*g - a*e*g^2)*e)) + 9 
0*c^4*d^6*e^3*f^2*g^2*arctan(sqrt(-c*d^2*e + a*e^3)*g/(sqrt(c*d*f*g - a*e* 
g^2)*e)) - 60*c^4*d^7*e^2*f*g^3*arctan(sqrt(-c*d^2*e + a*e^3)*g/(sqrt(c*d* 
f*g - a*e*g^2)*e)) + 15*c^4*d^8*e*g^4*arctan(sqrt(-c*d^2*e + a*e^3)*g/(sqr 
t(c*d*f*g - a*e*g^2)*e)) - 15*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^ 
2)*c^3*d^3*e^4*f^3 - 73*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*c^3 
*d^4*e^3*f^2*g + 118*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*a*c^2* 
d^2*e^5*f^2*g + 55*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*c^3*d^5* 
e^2*f*g^2 + 36*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*a*c^2*d^3*e^ 
4*f*g^2 - 136*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*a^2*c*d*e^6*f 
*g^2 - 15*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*c^3*d^6*e*g^3 - 1 
0*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*a*c^2*d^4*e^3*g^3 - 8*sqr 
t(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*a^2*c*d^2*e^5*g^3 + 48*sqrt(-c 
*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*a^3*e^7*g^3)/(sqrt(c*d*f*g - a*e*g 
^2)*c^3*d^3*e^4*f^7*g - 4*sqrt(c*d*f*g - a*e*g^2)*c^3*d^4*e^3*f^6*g^2 - 3* 
sqrt(c*d*f*g - a*e*g^2)*a*c^2*d^2*e^5*f^6*g^2 + 6*sqrt(c*d*f*g - a*e*g^...
 
3.7.88.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x} (f+g x)^5} \, dx=\int \frac {\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}}{{\left (f+g\,x\right )}^5\,\sqrt {d+e\,x}} \,d x \]

input
int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)/((f + g*x)^5*(d + e*x)^( 
1/2)),x)
 
output
int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)/((f + g*x)^5*(d + e*x)^( 
1/2)), x)